Scalable quantum computing with superconducting circuits – a dream becoming true

Speaker: Siyuan Han (Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA)

Time: May 16, 2017 16:00

Place: 郑裕彤讲堂

Abstract: Harnessing the power of intrinsic quantum parallelism for information processing has been a dream for many decades. 

 In recent years, breakthroughs in the development of superconducting qubits and circuit QED makes the superconducting approach 

one of the most promising candidates for scalable quantum information processing. Superconducting qubits, such as flux and phase 

qubits, are engineered artificial atoms with many distinctive advantages: they can be designed, simulated, and fabricated by leveraging

 advanced semiconductor integrated circuit technology; their properties can be characterized and adjusted accurately in situ; coherence 

time has been improved continuously and is reaching the level required for fault-tolerance quantum computing; fast single- and multi-qubit

 gates with high fidelity has been demostrated, and the circuits can be readily expanded to form large scale quantum processors.

 In particular, it has been demonstrated that a superconducting resonator provides a quantized cavity field which can mediate

 long-range and fast interaction between distant superconducting qubits. More importantly, by exploiting the super-exchange pair 

interactions mediated by two-level couplers (or resonators) between qubits one can build scalable quantum information networks.

 I will give a brief review on the present status and future direction of superconducting approach to quantum computing and report

 some of our recent results in this increasingly exciting research field.

*This work is supported in part by NSF PHY-1314861